David Fields, PhD


Senior Research Scientist
Zooplankton Ecologist
Phone: +1 (207) 315-2567, ext. 313
Fax: +1 (207) 315-2329
dfields@bigelow.org

For media inquiries, please contact sprofaizer@bigelow.org



Education

B.S. Biology. University of Utah, 1986

M.S. State University of New York - Stony Brook, 1991

Ph.D. Coastal Oceanography. State University of New York - Stony Brook, 1996


Research Interests

Dr. Field's is a zooplankton ecologist. The Fields' laboratory studies the role of zooplankton (particularly copepods) in transferring organic matter through the food web and in mediating bio-geochemical cycling in the oceans. Our approach is to understand how the mechanisms that occur at the level of the individual animal drive regional and global scale distribution patterns in zooplankton. This work incorporates general data of zooplankton ecology (classical grazing experiments, egg production and developmental rates) as well as data from small-scale fluid mechanics, neurophysiology and animal behavior.

Professional Affiliations and Memberships

(1989 - present) American Society of Limnology and Oceanography

(1994 - present) American Geophysical Union

(1997 - present) The Oceanography Society


Learn more about zooplankton physiology and sensory ecology research here.

Publications

  • Yen, J. and D.M. Fields. 1992. Escape responses of Acartia hudsonica (Copepoda) nauplii from the flow field of Temora longicornis (Copepoda). Erg. der Limnol.: 36:123-134.
  • Fields, D.M. and J. Yen. 1993. Outer limits and inner structure: the 3 - dimensional flow field of Pleuromamma xiphias (Copepoda). Bull. Mar. Sci. 53: 84-95.
  • Jonasdottir, S. H., D.M. Fields, and S. Pantoja. 1995. Copepod egg production in Long Island Sound as a function of the chemical composition of seston. Mar. Ecol. Prog. Ser. 119: 87-98.
  • Fields, D.M. and J. Yen. 1996. The escape behavior of Pleuromamma xiphias from a quantifiable fluid mechanical disturbance. In Lenz, P.H. D.K. Hartline, J.E. Purcell, and D.L. Macmillan. (eds.),
  • Zooplankton: Sensory Ecology and Physiology. Vol. 1, pp. 323-340. Gordan and Breach Publ., Amsterdam.
  • Fields, D.M. 1996. The Interaction of Calanoid Copepods with a Moving Fluid Environment: Implications for the Role of Feeding Current Morphology in Predator - Prey Interactions. Ph.D. State University of New York. p. 353.
  • Fields, D.M. and J. Yen. 1997. Implication of copepod feeding currents on the spatial orientation of their prey. J. Plankton Res. 19: 79-85.
  • Fields, D.M. and J. Yen. 1997. The escape behavior of marine copepods in response to a quantifiable fluid mechanical disturbance. J. Plankton Res.19: 1289-1304.
  • Fields, D.M., J.R. Strickler, S. Wroczynski and D. Vande Slute. 1998. The creation of laboratory generated turbulence. Technical Report #48 to the WATER Institute.
  • Fields, D.M. 1998. The implications of biologically and physically created fluid motion on the sensory horizon of copepods. Oceanography. 11(2): 26.
  • Moore, P.A., D.M. Fields, and J. Yen. 1999. The physical constraints of chemoreception in foraging copepods. Limnol. Oceanogr. 44(1): 166-177.
  • Gries, T. K Johnk, D.M. Fields and J.R. Strickler. 1999. Size and structure of 'footprints' produced by Daphnia: impact of animal size and density gradients. J. Plankton Res. 21:509-523.
  • Fields, D.M. 2000.Characteristics of the high frequency escape reactions of Oithona sp. Marine andFreshwater Behaviour and Physiology 34: 21-35.
  • Preston, BL, Snell, TW, Fields, DM, Weissburg, MJ. 2001. The effects of fluid motion on toxicantsensitivity of the rotifer Brachionus calyciflorus. Aquatic Toxicology 52(2), 117-131.
  • Doall, MH, JR Strickler, DM Fields, J Yen. 2002. Mapping the attack volume of a free-swimmingplanktonic copepod, Euchaeta rimana. Marine Biology. 140: 871-879.
  • Fields, D.M., D. S. Shaeffer, M.J. Weissburg. 2002. Mechanical and neural responses from themechanosensory hairs on the antennule of Gaussia princeps. Mar. Ecol. Prog. Ser. 227:173-186.
  • Fields, D.M and J. Yen, 2002. Fluid mechanosensory stimulation of behavior from a planktonic marinecopepod Euchaeta rimana Bradford. J. Plankton. Res. 24(8): 747-755.
  • Lapensa, S. T.W. Snell, D.M. Fields, M. Serra. 2002 Predatory interactions between acyclopoid copepod and rotifer sibling species. Freshwater Biology 47: 1685-1695
  • Thompson, C, D.M. Fields, Zhang, Z-R, N McCarty. 2004. Inhibition of ClC-2 by a peptide component ofscorpion venom J. Gen. Physiol. 122: 29A
  • Lapensa, S. T.W. Snell, D.M. Fields, M. Serra. 2004 Selective feeding of Artodiaptomus salinus (Copepoda, Calanoida) on co-occurring sibling rotifer species. Freshwater Biology 49: 1053-1061
  • Fields, D.M. and M.J. Weissburg. 2004 Rapid depolarization rates from the antennules ofcopepods. J.Comp. Phys A 190(11): 877-882
  • Thompson CH, Fields DM, Olivetti PR, Fuller MD, Zhang ZR, Kubanek J, McCarty NA. 2005. Inhibitionof ClC-2 by a peptide component of scorpion venom J. Membrane Biol. 208: 65-76.
  • Fields, D.M. and M.J. Weissburg. 2005. Evolutionary and ecological significance of mechanosensorymorphology: Copepods as a model system. Mar. Ecol. Prog. Ser. 287: 269-274
  • Fields, D.M. Weissburg, M.J. and Browman, HI. 2007. Chemoreception in the salmon louse(Lepeophtheirus salmonis): an electophysiological approach. Dis. Aquat. Org. 78:161-168.
  • Fields, D.M. 2010. Orientation affects the sensitivity of Acartia tonsa to fluid mechanicalsignals. Mar. Biol. 157:505–514 DOI 10.1007/s00227-009-1336-5
  • Abrahamsen M.B, Browman H.I, Fields D.M, ·Skiftesvik A.B. 2010. The three-dimensional prey field ofthe northern krill, Meganyctiphanes norvegica, and the escape responses of their copepod prey.Mar. Biol. DOI 10.1007/s00227-010-1405-9.
  • Browman H.I, Yen J, Fields D.M, St-Pierre JF, Skiftesvik A.B. 2011. Fine-scale observations of thepredatory behaviour of the carnivorous copepod Paraeuchaeta norvegica and the escape responsesof their ichthyoplankton prey, Atlantic cod (Gadus morhua). Marine Biology 158: 2653-2660DOI 10.1007/s00227-011-1763-y.
  • Fields DM, Durif CMF, Bjelland RM, Shema SD, Skiftesvik AB, Browman HI. 2011.
  • Grazing rates of copepods on algae exposed to different levels of UVradiation. PLoS ONE 6 (10) e26333 http://dx.plos.org/10.1371/journal.pone.0026333
  • Fields D.M., Shema S.D., Skiftesvik A.B., Browman HI. 2012. Light primes the escaperesponse of the
  • Calanoid copepod,Calanus finmarchicus. PLoS ONE 7(6): e39594.doi:10.1371/journal.pone.0039594.
  • Fukunishi Y, Browman HI, Durif CMF, Bjelland RM, Shema SD, Fields DM, Skiftesvik AB. 2013. Sub-Lethal Exposure to Ultraviolet Radiation Reduces Prey Consumption by Atlantic Cod Larvae(Gadus morhua). Mar Biol DOI 10.1007/s00227-013-2253-1
  • 2014

  • Fields, D.M. 2014. The sensory horizon of marine copepods, pp: 157-179, In, Seuront, L. (Ed.), Copepods:Diversity, Habitat and Behavior. Nova Science Publishers, Inc.
  • Nuester J, Shema SD, Vermont A, Fields DM and Twining BS. 2014. The regeneration of highlybioavailable iron by meso- and microzooplankton Limnol. Oceanogr. 59: 1399-1409
  • 2015

  • Fields DM, Runge JA, Thompson C, Shema SD, *Bjelland RM, Durif CMF, Skiftesvik AB, Browman HI. 2015. Infection of the planktonic copepod Calanus finmarchicus by the parasitic dinoflagellate, Blastodinium spp.: effects on grazing, respiration, fecundity, and fecal pellet production JPR. doi:10.1093/plankt/fbu084
  • Durif CMF, Fields DM, Browman HI Shema SD, Enoae JR, Skiftesvik AB, Bjelland RM, Sommaruga R, Arts MT. 2015. UV radiation changes algal stoichiometry, but does not have cascading effects on a marine food chain. JPR 37 DOI: 10.1093/plankt/fbv082
  • 2016

  • Zarubin M, Lindemann Y, Brunner O, Fields DM, Browman HI, Genin A. 2016 The effect of hydrostatic pressure on grazing in three calanoid copepods JPR DOI: 10.1093/plankt/fbv110
  • Runge JA, Fields DM, Thompson CRS, Shema DS, Bjelland RM, Durif CMF, Skiftesvik AB, Browman HI. 2016. End of the century CO2 concentrations do not have a negative effect on vital rates of Calanus finmarchicus, an ecologically critical planktonic species in North Atlantic ecosystems ICES Journal of Marine Sciences doi:10.1093/icesjms/fsv258
  • Bailey A, Thor P, Browman HI, Fields DM, Runge J, Vermont A, Bjelland RJ, Thompson C, Shema SD, Durif C, Hop H. 2016. Early development of the Arctic copepod Calanus glacialis shows limited response to increased seawater pCO2. ICES Journal of Marine Sciences doi:10.1093/icesjms/fsw066
  • Gilg IC, Archer SD, Floge SA, Fields DM, Vermont AI, Leavitt AH, Wilson WH, Martínez Martínez J (2016) Differential gene expression is tied to photo chemical efficiency reduction in virally infected Emiliania huxleyi. MEPS 55:13-27
  • Vermont AI, Martínez Martínez J, Waller J, Gilg IC, Leavitt AH, Floge SA, Archer SD, Wilson WH, Fields DM. 2016. Virus infection of Emiliania huxleyi deters grazing by the copepod Acartia tonsa J. Plankton Res. 00(00): 1–12. doi:10.1093/plankt/fbw064
  • 2017

  • Waller J, Wahle R, McVeigh H, Fields DM 2016. Linking rising CO2 and temperature to the larval development and physiology of the American lobster (Homarus americanus) ICES doi:10.1093/icesjms/fsw154
  • Bailey A, De Wit P, Thor P, Browman HI, Bjelland R, Shema S, Fields DM, Runge JA, Thompson C, Haakon Hop H. 2017. Regulation of gene expression underlies tolerance of the Arctic copepod Calanus glacialis to CO2-acidified seawater. Ecol Evol7(18):7145-7160
  • Bailey A, P Thor, HI Browman, DM Fields, J Runge, A Vermont, R Bjelland 2017. Early life stages of the Arctic copepod Calanus glacialis: Towards a Broader Perspective on Ocean Acidification Research Part 2 A special issue of the Ices Journal of Marine Science: Ices Journal of Marine Science: Journal du Conseil 74 (4), 996-1004
  • 2018

  • Fields DM, Skiftesvik AB, Browman HI. 2017. Behavioural responses of infective-stage copepodids of the salmon louse (Lepeophtheirus salmonis, Copepoda:Calgidae) to host related sensory cues Journal of Fish Diseases 41:875-884 DOI: 10.1111/jfd.12690.
  • White M, Fields DM Balch WM, Lubelczyk L, Drapeau D, Bowler B, Waller J. 2018 Testing the Tums hypothesis: Dissolution of coccoliths buffers copepod guts. Science Reports (In Review)
  • Núñez-Acuña G, Gallardo-Escárate C, Fields DM, Shema S, Skiftesvik AB, Ormazábal I. Browman HI. 2018. The Atlantic salmon (Salmo salar) antimicrobial peptide cathelicidin-2 is a molecular host recognition cue for the salmon louse (Lepeophtheirus salmonis). Scientific Reports 8:13738
  • Goode A, Fields DM, Archer SD, Martinez Martinez J. 2018 Physiological responses of Oxyrrhis marina to a diet of virally infected Emiliania huxleyi..PeerJ 6:e26851v1.
  • Woods MN, ME Stack, DM Fields, SD Shaw, PA Matrai 2018. Microplastic fiber uptake, ingestion, and egestion rates in the blue mussel (Mytilus edulis) - Marine pollution bulletin 37:638-645
  • Elmi D, S Soumya, DR Webster, DM Fields Examining behavior of a cruise swimming copepod in a Burgers' vortex - Bulletin of the American Physical Society, 2018.
  • 2019

  • Weissburg MJ, J Yen, DM Fields 2019- Phytoplankton odor modifies the response of Euphausia superba to flow. Polar Biology.
  • Núñez-Acuña G, Gallardo-Escárate C, Fields DM, Skiftesvik AB, BrowmanHI. 2018 Silencing of ionotropic receptor 25a decreases chemosensory activity in the salmon louse Lepeophtheirus salmonis during the infective stage Gene (Accepted).
  • Fields DM, Browman HI, Fields DM, Handegard NO… 2018. Seismic blasting has regional effects of survival of Calanus finmarchicus. ICES (Accepted)
  • *Thompson c. Fields DM, Shema SD, Runge J, Browman HI. 2019 Effect of OA on energetics in Salmon lice JPR (in Review)
  • *Escobar, R.H., D.M. Fields, H.I. Browman, S.D. Shema, R.M. Bjelland, A.-L. Agnalt, A.B. Skiftesvik, C.M.F. Durif & O.B. Samuelsen. The effects of hydrogen peroxide on mortality, escape response and oxygen consumption of Calanus spp. Ecotoxicology and Environmental Safety. (in Review)