David Fields, PhD


Senior Research Scientist
Zooplankton Ecologist
Phone: +1 (207) 315-2567, ext. 313
Fax: +1 (207) 315-2329
dfields@bigelow.org

For media inquiries, please contact sprofaizer@bigelow.org



Education

B.S. Biology. University of Utah, 1986

M.S. State University of New York - Stony Brook, 1991

Ph.D. Coastal Oceanography. State University of New York - Stony Brook, 1996


Research Interests

Dr. Field's is a zooplankton ecologist. The Fields' laboratory studies the role of zooplankton (particularly copepods) in transferring organic matter through the food web and in mediating bio-geochemical cycling in the oceans. Our approach is to understand how the mechanisms that occur at the level of the individual animal drive regional and global scale distribution patterns in zooplankton. This work incorporates general data of zooplankton ecology (classical grazing experiments, egg production and developmental rates) as well as data from small-scale fluid mechanics, neurophysiology and animal behavior.

Professional Affiliations and Memberships

(1989 - present) American Society of Limnology and Oceanography

(1994 - present) American Geophysical Union

(1997 - present) The Oceanography Society


Learn more about zooplankton physiology and sensory ecology research here.

Publications

  • Yen, J. and D.M. Fields. 1992. Escape responses of Acartia hudsonica (Copepoda) nauplii from the flow field of Temora longicornis (Copepoda). Erg. der Limnol.: 36:123-134.
  • Fields, D.M. and J. Yen. 1993. Outer limits and inner structure: the 3 - dimensional flow field of Pleuromamma xiphias (Copepoda). Bull. Mar. Sci. 53: 84-95.
  • Jonasdottir, S. H., D.M. Fields, and S. Pantoja. 1995. Copepod egg production in Long Island Sound as a function of the chemical composition of seston. Mar. Ecol. Prog. Ser. 119: 87-98.
  • Fields, D.M. and J. Yen. 1996. The escape behavior of Pleuromamma xiphias from a quantifiable fluid mechanical disturbance. In Lenz, P.H. D.K. Hartline, J.E. Purcell, and D.L. Macmillan. (eds.),Zooplankton: Sensory Ecology and Physiology. Vol. 1, pp. 323-340. Gordan and Breach Publ., Amsterdam.
  • Fields, D.M. 1996. The Interaction of Calanoid Copepods with a Moving Fluid Environment: Implications for the Role of Feeding Current Morphology in Predator - Prey Interactions. Ph.D. State University of New York. p. 353.
  • Fields, D.M. and J. Yen. 1997. Implication of copepod feeding currents on the spatial orientation of their prey. J. Plankton Res. 19: 79-85.
  • Fields, D.M. and J. Yen. 1997. The escape behavior of marine copepods in response to a quantifiable fluid mechanical disturbance. J. Plankton Res.19: 1289-1304.
  • Fields, D.M., J.R. Strickler, S. Wroczynski and D. Vande Slute. 1998. The creation of laboratory generated turbulence. Technical Report #48 to the WATER Institute.
  • Fields, D.M. 1998. The implications of biologically and physically created fluid motion on the sensory horizon of copepods. Oceanography. 11(2): 26.
  • Moore, P.A., D.M. Fields, and J. Yen. 1999. The physical constraints of chemoreception in foraging copepods. Limnol. Oceanogr. 44(1): 166-177.
  • Gries, T. K Johnk, D.M. Fields and J.R. Strickler. 1999. Size and structure of 'footprints' produced by Daphnia: impact of animal size and density gradients. J. Plankton Res. 21:509-523.
  • Fields, D.M. 2000.Characteristics of the high frequency escape reactions of Oithona sp. Marine and Freshwater Behaviour and Physiology 34: 21-35.
  • Preston, BL, Snell, TW, Fields, DM, Weissburg, MJ. 2001. The effects of fluid motion on toxicant sensitivity of the rotifer Brachionus calyciflorus. Aquatic Toxicology 52(2), 117-131.
  • Doall, MH, JR Strickler, DM Fields, J Yen. 2002. Mapping the attack volume of a free-swimming planktonic copepod, Euchaeta rimana. Marine Biology. 140: 871-879.
  • Fields, D.M., D. S. Shaeffer, M.J. Weissburg. 2002. Mechanical and neural responses from the mechanosensory hairs on the antennule of Gaussia princeps. Mar. Ecol. Prog. Ser. 227:173-186.
  • Fields, D.M and J. Yen, 2002. Fluid mechanosensory stimulation of behavior from a planktonic marine copepod Euchaeta rimana Bradford. J. Plankton. Res. 24(8): 747-755.
  • Lapensa, S. T.W. Snell, D.M. Fields, M. Serra. 2002Predatory interactions between a cyclopoid copepod and rotifer sibling species. Freshwater Biology 47: 1685-1695
  • Thompson, C, D.M. Fields, Zhang, Z-R, N McCarty. 2004. Inhibition of ClC-2 by a peptide component of scorpion venom J. Gen. Physiol. 122: 29A
  • Lapensa, S. T.W. Snell, D.M. Fields, M. Serra. 2004Selective feeding ofArtodiaptomus salinus (Copepoda, Calanoida) on co-occurring sibling rotifer species. Freshwater Biology 49: 1053-1061
  • Fields, D.M. and M.J. Weissburg. 2004 Rapid depolarization rates from the antennules of copepods. J.Comp. Phys A 190(11): 877-882
  • Thompson CH, Fields DM, Olivetti PR, Fuller MD, Zhang ZR, Kubanek J, McCarty NA. 2005. Inhibition of ClC-2 by a peptide component of scorpion venom J. Membrane Biol. 208: 65-76.
  • Fields, D.M. and M.J. Weissburg. 2005. Evolutionary and ecological significance of mechanosensory morphology: Copepods as a model system. Mar. Ecol. Prog. Ser. 287: 269-274
  • Fields, D.M. Weissburg, M.J. and Browman, HI. 2007. Chemoreception in the salmon louse (Lepeophtheirus salmonis): an electophysiological approach. Dis. Aquat. Org. 78:161-168.
  • Fields, D.M. 2009. Orientation affects the sensitivity of Acartia tonsa to fluid mechanical signals. Mar. Biol. 157:505–514 DOI 10.1007/s00227-009-1336-5
  • Abrahamsen MB, Browman HI, Fields DM, ·Skiftesvik AB. 2010. The three-dimensional prey field of the northern krill, Meganyctiphanes norvegica, and the escape responses of their copepod prey. Mar. Biol. DOI 10.1007/s00227-010-1405-9.
  • Browman HI, Yen J, Fields DM, St-Pierre JF, Skiftesvik AB. 2011. Fine-scale observations of the predatory behaviour of the carnivorous copepod Paraeuchaeta norvegica and the escape responses of their ichthyoplankton prey, Atlantic cod (Gadus morhua). Marine Biology158: 2653-2660 DOI 10.1007/s00227-011-1763-y.
  • Fields DM., Durif CMF, *Bjelland RM, Shema SD, Skiftesvik AB, Browman HI. 2011. Grazing rates of copepods on algae exposed to different levels of UV radiation. PLoS ONE 6 (10) e26333 http://dx.plos.org/10.1371/journal.pone.0026333
  • Fields DM., Shema S.D., Skiftesvik A.B., Browman HI. 2012. Light primes the escape response of the Calanoid copepod,Calanus finmarchicus. PLoS ONE 7(6): e39594. doi:10.1371/journal.pone.0039594.
  • Fukunishi Y, Browman HI, Durif CMF, *Bjelland RM, Shema SD, Fields DM, Skiftesvik AB. 2013. Sub-Lethal Exposure to Ultraviolet Radiation Reduces Prey Consumption by Atlantic Cod Larvae (Gadus morhua). Mar Biol DOI 10.1007/s00227-013-2253-1
  • Nuester J, Shema SD, *Vermont A, Fields DM and TwiningBS. 2014. The regeneration of highly bioavailable iron by meso- and microzooplankton Limnol. Oceanogr. 59: 1399-1409.
  • Fields DM, Runge JA, Thompson C, Shema SD, *Bjelland RM, Durif CMF, Skiftesvik AB, Browman HI. 2014. Infection of the planktonic copepod Calanus finmarchicus by the parasitic dinoflagellate, Blastodinium spp.: effects on grazing, respiration, fecundity, and fecal pellet production JPR. doi:10.1093/plankt/fbu084
  • Fields DM. 2014. The sensory horizon of marine copepods, pp: 157-179, In, Seuront, L. (Ed.), Copepods: Diversity, Habitat and Behavior. Nova Science Publishers, Inc.
  • Durif CMF, Fields DM, Browman HI, Shema SD, Enoae JR, Skiftesvik AB, Bjelland R, Sommaruga R, Arts MT. 2016. UV radiation changes algal stoichiometry, but does not have cascading effects on a marine food chain. JPR 37 DOI: 10.1093/plankt/fbv082
  • Zarubin M, Lindemann Y, Brunner O, Fields DM, Browman HI, Genin A. 2016 The effect of hydrostatic pressure on grazing in three calanoid copepods JPR DOI: 10.1093/plankt/fbv110
  • Runge JA, Fields DM et al. 2016. End of the century CO2 concentrations do not have a negative effect on vital rates of Calanus finmarchicus, an ecologically critical planktonic species in North Atlantic ecosystems ICES Journal of Marine Sciences