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The following technical report has been prepated to serve as an archive of data supporting
the Northeastern Naturalist publication entitled “Nutrient Sources and Distributions in Cobscook
Bay” by Chris and Jean Garside. It consists of the manuscript itself, supporting tables and
figures and a summary table of data. Investigators needing more detailed information may contact
Peter F. Larsen at the Bigelow Laboratory.




Nutrient Sources and Distributions in Cobscook Bay

Chris Garside
and

Jean C. Garside

Bigelow Laboratory for Ocean Sciences
West Boothbay Harbor, Maine 04537

ABSTRACT

The nutrient distribution in the highly productive, macrotidal Cobscook Bay, located in
the northern Gulf of Maine, was investigated through a series of spring-neap cruises during the
spring, summer and fall of 1995. Sampling design included three, five station transects at major
constrictions in the bay and 21 peripheral stations in the principal coves and sub-embayments.
Results indicate that Cobscook Bay is nutrient rich throughout the year and is potentially
eutrophic. Plots of salinity against nitrate show that this is a totally natural circumstance brought
about by an abundant supply of nutrients, most importantly nitrate, from the adjacent Gulf of
Maine. Predictive nutrient algorithms fitted with a hydrodynamic model emphasize the high
nitrate water entering the bay from the seaward end and diminishing in concentration with
distance from the mouth. The plant biomass produced is heavily grazed resulting in high
ammonium concentrations from excretion and regeneration. The high ammonium concentrations
and its incomplete re-utilization by the phytoplankton strongly suggest that plant biomass is
controlled by grazing. In other words, despite a high natural nutrient loading, natural grazing
processes serve to limit the accumulation of plant material and potential eutrophication.
Comparing all potential nitrogen fluxes indicates that man-made contributions are not significant
to the overall nutrient budget of Cobscook Bay, although they may have local impacts.




INTRODUCTION

The same nutrients that are important for healthy growth of land plants, nitrogen and
phosphorous, are also essential for the growth of marine plants. In the lighted upper portion of
the sea, nitrogen may be available for plant growth as nitrate and ammonium, sometimes referred
to as combined inorganic nitrogen. However, during the summer months it frequently becomes
exhausted while other nutrients do not, so nitrogen is often considered the “limiting nutrient”
(Ryther and Dunstan 1971). By limiting we mean that adding more nitrate or ammonium will
cause an increase in plant growth rate and quantity (biomass), whereas adding other nutrients will
cause little response. For this reason, in marine systems, study of combined inorganic nitrogen
can tell us a lot about the health and productivity of a water body.

There is often a great deal of public concern about nutrients in both fresh and saltwater.
They are, however, essential for marine life and healthy productive waters. Virtually all life in the
oceans depends on a supply of nutrients to promote plant (phytoplankton and algal) growth.
Herbivorous animals depend on the plants for their nutrition and become prey and food for larger
animals. In the big picture, the amount of protein nitrogen that can be removed from a natural
system, and this applies collectively to seaweed harvesting, shellfish digging and dragging, fishing,
migratory bird feeding and a host of other activities, cannot exceed the supply of combined '
inorganic nitrogen to it, without depletion and ultimately detriment. Some of the most productive
fisheries in the world are found in regions that have high natural rates of nutrient supply and high
nutrient concentrations. The anchovy and similar fisheries of upwelling regions such as the coast
of Chile are good examples, where high nuirient concentrations have direct economic value.

A frequent cause of concern when dealing with nutrients is that they may be present in
excess. When this happens plant biomass increases dramatically and the process is called
eutrophication. Eventually, biomass may reach such high concentrations that night-time
respiration can use up all the dissolved oxygen in the water, causing anoxia that results in mass
mortality of plants and animals alike. Generally, the problem leading to anoxic events is one of
scale: that is, there is an enormous amount of nutrient producing activity, which is frequently
human, and a limited, often inadequately flushed receiving water to absorb the nutrients. Anoxic
events are actually quite rare and limited geographically. They can occur naturally, but they can
occur as a result a variety of human activities. These include sources such as collected sewage
discharge (Hudson Estuary / New York Bight), agricultural fertilizer and animal feed that is
allowed to enter coastal waters without proper safeguard.

It is important to remember that high nutrient concentrations can be natural, do not
necessarily lead to eutrophication, and can have tremendous ecological and economic value
(Garside et al. 1978). Cobscook Bay is such a case.

BACKGROUND

We are interested in the distribution of nutrients in Cobscook Bay because they can tell
us a lot about how the Cobscook Bay ecosystem works. Our study obtained samples from many
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locations within the Bay twice in May, twice in July, and in October and November of 1995. We
chose these sample times to allow us to observe the start of the growing season for marine plants,
its peak in the summer, and its decline in the fall. We hoped to see the nutrient distributions
before plants started to use them, as they consumed them, when they were most utilized and
then as use declined and ceased.

One problem with studying a region like Cobscook Bay is that a large volume of water
moves in and out of the Bay on each tide on extremely strong currents. Indeed, tidal currents
reach 2m/sec as a volume equal to the outflow of the Mississippi River passes through the
narrow passages of Cobscook Bay on each ebb and flood tide (Brooks et al. 1999). A sample
taken at a particular location half an hour ago came from water that is now miles away, and a
sample taken from the same location now is from water that was elsewhere when the previous
sample was taken. It too will be far away half an hour from now, and all the time water is mixing
and changing as a result. In other words, trying to relate nutrient concentrations to geographical
locations is not very meaningful unless we could sample all locations at the same moment, which
is not possible. What we often do in estuaries is relate nutrient and other distributions to salt
content, or salinity, which varies from 0 at the river inflow to 32 - 33ppt in the coastal sea.
Mixing of fresh and seawater in the estuary provides waters with a range of salinities and related
properties in between (Ketchum 1955). Instead of plotting measurements against geographical
location or mile point along the estuary, we plot graphs of the measurements from a sample
against the salinity of the same sample.

The reason for this way of looking at things is that properties that enter with freshwater
will distribute with it, with higher concentrations in fresher water in the Bay, and those that enter
from the sea will have higher concentrations in saltier water. In fact, if only mixing affects the
concentration of a property, then concentration should be proportional to salinity forming a
straight line between the freshwater concentrations and the saltwater concentration on the graph
(Ketchum 1951). We may have only a general idea of where water with a particular salinity is in
the Bay at any time, depending on the tide, but we can know what its properties such as nutrient
concentration should be, and depending on its distribution with salinity, where the property
originated. Often we find that the distribution is not proportional to salinity, which tells us that
other processes have affected concentration, either removing or adding to what we would expect
(Ketchum 1955). With nutrients, this can tell us a lot about processes such as uptake and
regeneration.

METHODS

Water samples for nutrient analysis were collected through a series of hydrographic cruises in
Cobscook Bay during 1995. The three-day cruises were centered around the extremes of the
spring-neap tidal cycles in spring (May), summer (July) and fall (October and November), i.e. six
cruises. Stations consisted of three, five-station transects across the main flow axis of the
prominent constrictions that separate Cobscook Bay into sub-basins (Fig. 1) and 21 peripheral
stations generally situated in the center of subtidal areas of the principal coves and sub-
embayments. The transects were sampled at high and low water in an effort to obtain synoptic

5




sections of physical, chemical and biological conditions across these constrictions. Peripheral
stations were occupied at irregular times between high and low tide. Portions of the inner bays
were inaccessible because of their shallowness. See Phinney et al. (2004) for detailed information
on station locations. «

Station activities related to nutrient chemistry and the development of the algorithm for
the prediction of nutrient distribution included a Seabird SeaCAT19 CTD profile of temperature
and salinity to within 1m of the bottom and collection of water samples using a Niskin bottle one
meter from the surface and one meter from the bottom.

Water samples were vacuum (10cm Hg) filtered through Whatman GFF glass fiber filters
into 20 ml. sample vials and frozen. Samples were thawed immediately prior to analysis at the
Bigelow Laboratory. Analysis for nitrate (and nitrite, ammonium, phosphate and silicate) was
done on a five channel continuous flow analyzer. The continuous flow analyzer is of our design
and runs chemistries adapted from Strickland and Parsons (1972). Although samples do not
always preserve well for some analyses, they do for nitrate, which is our principal interest here.
Precision was +/- 0.05 pg-at. N 1" (Glibert et al. 1991).

Predictive algorithms relating nitrate concentrations to the temperatue/salinity distribution
were developed using the step-wise multi-variate polynomial regression techniques developed
and described in Garside and Garside (1995).

A complete table of data is available in paper and digital format in Garside et al. (2004).

RESULTS AND DISCUSSION

Spring and Summer

Nitrate is plotted against salinity in the spring (May points marked 1 and 2) and summer
(July points marked 3 and 4)(Fig. 2). There are differences between the two distributions, which
we expect, but both show a rapid decline of nitrate with decreasing salinity. What this indicates is
that the source of nitrate is in waters with the highest salinity, in other words the seawater end.
In the spring the concentrations are generally higher than in the summer and greater than zero
because plant growth is just starting and nitrate is not used entirely or as quickly as it is in the
summer. Salinities are lower than in the summer because freshwater run-off is higher in the spring
causing slightly more dilution of the seawater. However, the general pattern in both cases is
unequivocal evidence that nitrate enters Cobscook Bay from the seaward end, and the
distribution is dominated by this source.

A second feature of this distribution is that in both spring and summer, nitrate would be
depleted before salinity reached zero (Fig. 2). This further reinforces the conclusion that the
ocean and not the rivers provides the nitrate distribution in Cobscook Bay. It also tells us that
nitrate is being utilized within the bay by plants, since if it were not, nitrate concentrations
would decline much more gradually with salinity, reaching low values only when salinities
approach zero.

There are several other lines of evidence that suggest that the coastal sea is the source of
nitrate. A much more complicated analysis of the nitrate and temperature/salinity data allow us
to create equations that can be used to predict nitrate from temperature and salinity (Garside and
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Garside 1995). Since we have hydrodynamic models that can predict the distribution of salinity
and temperature (Brooks et al. 1999), these models can also be used to describe nitrate
distribution. Results (Fig. 3) indicate high nitrate water entering the Bay from the seaward end
and diminishing in concentration into the bays and towards the rivers.

A second line of evidence can be obtained by comparing the potential nitrogen fluxes from
other candidates with the nitrate transported in and out of the Bay on the tide each day (Table 1).
These calculations show that all the other likely candidate sources of nitrogen to Cobscook Bay
combined only represent about 3% of the nitrogen that is transported by the tide each day as
nitrate, and 5% of what is utilized each day in the growing season by plants. Thus, although local
impacts of the other sources cannot be discounted, in the bigger picture, only tidal exchange of
nitrate is comparable to plant utilization of nitrogen, and the lesser sources are insignificant.

Ammonium is excreted by animals that consume plants, and also by bacterial breakdown
of nitrogen-containing organic matter (Glibert et al. 1988). 1t is used preferentially over nitrate by
most marine plants, and is also oxidized quite rapidly by bacteria to nitrate. As a result it is
important in phytoplankton nutrition, and its presence tells us about recent herbivory and
recycling. In ocean waters, its presence often indicates that plant production and herbivorous
grazing are closely balanced, and this is observed as the ecosystem matures in the summer.

The distribution of ammonium in Cobscook Bay in the spring and summer is shown in
Fig. 4. Unlike nitrate, ammonium is distributed quite randomly with respect to salinity in both
the spring and the summer. Since ammonium is produced by regenerative processes and is
relatively short lived, this strongly suggests that the ammonium is being regenerated within
Cobscook Bay. What is most surprising is that ammonium concentrations are almost as high in
the spring as they are in the summer. High concentrations in the summer and fall would be
expected because the herbivore populations have had chance to respond to the available plant
food and grow to match the supply. This is not normally the case in the spring. The implication
is that at least some of the herbivore population is already in place in the Bay and starts to
consume plankton as soon as they grow in the spring. This scenario is consistent with large
populations of filter feeding animals that are resident in the Bay, such as clams, mussels and
scallops.

This pool of nitrogen can be put in the same perspective as the other fluxes calculated
above:

Ammonium tidal exchange (2uM NHj in the Bay): 14.9 metric tons N per day

that may be lost if ebbing water is not returned on the next flood. Coincidentally, this helps
balance the nitrogen budget for the Bay (not the purpose of this exercise) but more importantly,
this flux is a factor of ten or more larger than any originating from current human activities based
on inputs from agriculture and sewage (Table 1).

Fall
In the fall we see nitrate utilization continuing into October (points labeled 5) and the
distribution is still similar to summer conditions (Fig.5). By November, however, nitrate uptake
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ceases or is very low and nitrate concentrations are both high and almost uniform over the
salinity range sampled (points labeled 6). Despite the high nutrient concentrations there is
reduced light to support plankton and algal growth, and phytoplankton populations decline while
fixed algae respire more than they photosynthesize, which has implications for nitrogen
regeneration.

Ammonium distributions in October are very similar to those in the summer, and for the
same reasons: herbivores effectively crop the phytoplankton and regenerate ammonium within
the Bay (Fig. 6). The same distribution persists into November but primary production has been
inferred to have decreased, based on the nitrate distribution, and so the source of this ammonium
must be different, at least in part.

Nutrient data alone are insufficient to elucidate the source of the regeneration that
continued high ammonium concentrations imply. However, by the fall there are large reservoirs of
organic nitrogen in seaweeds and algal mats. These break down and are grazed, resulting in direct
regeneration and a continued supply of particles for filter feeders. In fact, for a variety of reasons
other than the nutrient distribution, it seems very likely that grazing on fixed algae is at least as
important as filter feeding on phytoplankton in the regeneration of nitrogen as ammonium
throughout the growing season and into the fall (see Campbell 2004; Vadas et al. 2004).

The ultimate source of nitrate?

A final comment on where the nitrate comes from, when much of the Gulf of Maine
surface water is nutrient depleted throughout the summer, is in order. High nitrate concentrations
build up in deeper waters where the products of excretion, death and decay accumulate and the
nitrogen they contain is oxidized eventually to nitrate. In the absence of sufficient light this
nitrate cannot be utilized until physical processes bring it to the surface where there is light,
photosynthesis, plant growth and nutrient uptake. This occurs annually throughout the Gulf
when winter cooling causes deep convection, water column overturn and mixing providing a
nutrient supply supporting phytoplankton growth when days lengthen in the spring. Mixing is
the key. Over much of the Gulf the spring warming results in warm, nutrient-depleted water at
the surface separated by a thermocline from colder, nutrient-rich water below (Hopkins and
Garfield 1979). Nutrients and high production are short lived in the surface layer.

In the Bay of Fundy two circumstances contribute to mixing of nutrients to the surface
throughout the year. In moving from the Gulf into the Bay of Fundy tidal currents are
compressed and accelerated by both a narrowing channel and shoaling of the bottom. At some
point the increasing turbulence from increasingly faster currents acting on the bottom provides
enough energy to destabilize the water column and break the thermocline. Cold nutrient rich
water is mixed to the surface and it is this water that acts as a source of nutrients to Cobscook
Bay. The large volume tidal exchange of the Bay throughout the year serves as the local transport
mechanism (Brooks et al. 1999).

CONCLUSIONS

Cobscook Bay is nutrient rich throughout the year, and is potentially eutrophic. This is a
8




totally natural circumstance brought about by an abundant supply of nutrients, most importantly
nitrate, from the adjacent Gulf of Maine. These nutrients promote phytoplankton and fixed algal
growth and the biomass produced is heavily grazed resulting in high ammonium concentrations
from excretion and regeneration. The high ammonium concentrations and its incomplete re-
utilization by the phytoplankton strongly suggest that plant biomass is controlled by grazing. In
other words, despite a high natural nutrient loading, natural grazing processes serve to limit the
accumulation of plant material and potential eutrophication. At least at the time these
measurements were made, man-made contributions were not significant to the nutrient budget of
the Bay, although they may have significant local impact. Consequently, the nutrient status of
Cobscook Bay has probably changed little since the development of macrotidal ranges
approximately 7,000 years BP (Scott and Greenberg 1983).
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Table 1. Comparison of potential daily, tidal nitrogen fluxes, as nitrate, in and out of Cobscook

Bay each day.

Nitrate tidal exchange (5uM NOj source in spring)’
Nitrogen consumed by plants(400gCm™y ™! over 6 months)'

Nitrogen in salmon feed (1994/5 data) *
Total nitrogen in freshwater run-off 2

Total nitrogen in rain and dust fallout 2
Sewage nitrogen (10,000 people max.)*

70.0 metric tons N per day

40.2

1.2
0.9
0.2
0.01

13

<6

13

(19

43

>

»”

29

»”

2

Data from this ! or other personal studies *. % Data provided by Dan Campbell, U.S.

Environmental Protection Agency.

i1

19

(13




FIGURES

Figure 1. Map of Cobscook Bay, Maine showing the locations of the principal transects.
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Cobscook Bay
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8
/
6 /
111,?
Z o 2
e 1
o4 1 25524 >
= 2 2 2
Z 1
1 22
2 5 1 o .
4
0 / 4
29.0 29.5 30.0 30.5 31.0 31.5 32.0
Salinity

Figure 2. The relationship between nitrate and salinity in the spring (May points labeled 1 and 2)

and summer (July points labeled 3 and 4). Points labeled 1 and 4 represent neap tides; 2 and 3
spring tides.
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Figure 4. The relationship between ammonium and salinity in the spring (May points labeled 1
and 2) and summer (July points labeled 3 and 4). Points labeled 1 and 4 represent neap
tides; 2 and 3 spring tides.
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Figure 5. The relationship between nitrate and salinity in the fall (October points labeled 5 and
November points labeled 6).
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Figure 6. The relationship between ammonium and salinity in the fall (October spring tide points
labeled 5 and November neap tide points labeled 6).
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